Inferring Contextual User Profiles - Improving Recommender Performance
نویسندگان
چکیده
In this paper we present the concept of inferred contextual user profiles (CUPs) which extends the traditional user profile definition by describing the user in a given situation, or context. The approach is evaluated in the scope of movie recommendation. In our evaluation, we infer two CUPs for each user, and use only one of the profiles, instead of the full user profile for recommending movies. We evaluate the model on a data snapshot from the Moviepilot movie recommendation website, with results showing a substantial improvement in terms of precision, recall and mean average precision.
منابع مشابه
Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network
The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...
متن کاملAn ontological hybrid recommender system for dealing with cold start problem
Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine and . We introduce an ontological hybrid RS where the ontology has been employed in its part while improving the ontology structure by its part. In this paper, a new hybrid approach is proposed based on the combination of demog...
متن کاملIncreasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms
Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...
متن کاملTowards Time-Dependant Recommendation based on Implicit Feedback
Context-aware recommender systems (CARS) aim at improving users’ satisfaction by tailoring recommendations to each particular context. In this work we propose a contextual pre-filtering technique based on implicit user feedback. We introduce a new context-aware recommendation approach called user micro-profiling. We split each single user profile into several possibly overlapping sub-profiles, ...
متن کاملPITT at TREC 2013 Contextual Suggestion Track
This paper reports the IRIS Lab@Pitt’s participation to 2013 TREC Contextual Suggestion track, which focuses on technology and issues related to location-based recommender systems (LBRSs). Besides the data provided by the track, our recommendation algorithms also retrieve information from Yelp for creating candidate, example and user profiles. Our algorithms uses linear regression model to comb...
متن کامل