Inferring Contextual User Profiles - Improving Recommender Performance

نویسندگان

  • Alan Said
  • Ernesto W. De Luca
  • Sahin Albayrak
چکیده

In this paper we present the concept of inferred contextual user profiles (CUPs) which extends the traditional user profile definition by describing the user in a given situation, or context. The approach is evaluated in the scope of movie recommendation. In our evaluation, we infer two CUPs for each user, and use only one of the profiles, instead of the full user profile for recommending movies. We evaluate the model on a data snapshot from the Moviepilot movie recommendation website, with results showing a substantial improvement in terms of precision, recall and mean average precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the performance of recommender systems in the face of the cold start problem by analyzing user behavior on social network

The goal of recommender system is to provide desired items for users. One of the main challenges affecting the performance of recommendation systems is the cold-start problem that is occurred as a result of lack of information about a user/item. In this article, first we will present an approach, uses social streams such as Twitter to create a behavioral profile, then user profiles are clusteri...

متن کامل

An ontological hybrid recommender system for dealing with cold start problem

Recommender Systems ( ) are expected to suggest the accurate goods to the consumers. Cold start is the most important challenge for RSs. Recent hybrid s combine  and . We introduce an ontological hybrid RS where the ontology has been employed in its  part while improving the ontology structure by its  part. In this paper, a new hybrid approach is proposed based on the combination of demog...

متن کامل

Increasing the Accuracy of Recommender Systems Using the Combination of K-Means and Differential Evolution Algorithms

Recommender systems are the systems that try to make recommendations to each user based on performance, personal tastes, user behaviors, and the context that match their personal preferences and help them in the decision-making process. One of the most important subjects regarding these systems is to increase the system accuracy which means how much the recommendations are close to the user int...

متن کامل

Towards Time-Dependant Recommendation based on Implicit Feedback

Context-aware recommender systems (CARS) aim at improving users’ satisfaction by tailoring recommendations to each particular context. In this work we propose a contextual pre-filtering technique based on implicit user feedback. We introduce a new context-aware recommendation approach called user micro-profiling. We split each single user profile into several possibly overlapping sub-profiles, ...

متن کامل

PITT at TREC 2013 Contextual Suggestion Track

This paper reports the IRIS Lab@Pitt’s participation to 2013 TREC Contextual Suggestion track, which focuses on technology and issues related to location-based recommender systems (LBRSs). Besides the data provided by the track, our recommendation algorithms also retrieve information from Yelp for creating candidate, example and user profiles. Our algorithms uses linear regression model to comb...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011